Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis.
نویسندگان
چکیده
Isoflavonoids are ecophysiologically active secondary metabolites of the Leguminosae and known for health-promoting phytoestrogenic functions. Isoflavones are synthesized by 1,2-elimination of water from 2-hydroxyisoflavanones, the first intermediate with the isoflavonoid skeleton, but details of this dehydration have been unclear. We screened the extracts of repeatedly fractionated Escherichia coli expressing a Glycyrrhiza echinata cDNA library for the activity to convert a radiolabeled precursor into formononetin (7-hydroxy-4'-methoxyisoflavone), and a clone of 2-hydroxyisoflavanone dehydratase (HID) was isolated. Another HID cDNA was cloned from soybean (Glycine max), based on the sequence information in its expressed sequence tag library. Kinetic studies revealed that G. echinata HID is specific to 2,7-dihydroxy-4'-methoxyisoflavanone, while soybean HID has broader specificity to both 4'-hydroxylated and 4'-methoxylated 2-hydroxyisoflavanones, reflecting the structures of isoflavones contained in each plant species. Strikingly, HID proteins were members of a large carboxylesterase family, of which plant proteins form a monophyletic group and some are assigned defensive functions with no intrinsic catalytic activities identified. Site-directed mutagenesis with soybean HID protein suggested that the characteristic oxyanion hole and catalytic triad are essential for the dehydratase as well as the faint esterase activities. The findings, to our knowledge, represent a new example of recruitment of enzymes of primary metabolism during the molecular evolution of plant secondary metabolism.
منابع مشابه
Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice.
Isoflavonoids are distributed predominantly in leguminous plants and play critical roles in plant physiology. A cytochrome P450 (P450), 2-hydroxyisoflavanone synthase, is the key enzyme in their biosynthesis. In cultured licorice (Glycyrrhiza echinata L., Fabaceae) cells, the production of both an isoflavonoid-derived phytoalexin (medicarpin) and a retrochalcone (echinatin) is rapidly induced u...
متن کاملThe Missing Link in Leguminous Pterocarpan Biosynthesis is a Dirigent Domain-Containing Protein with Isoflavanol Dehydratase Activity
Pterocarpan forms the basic structure of leguminous phytoalexins, and most of the isoflavonoid pathway genes encoding the enzymes responsible for its biosynthesis have been identified. However, the last step of pterocarpan biosynthesis is a ring closure reaction, and the enzyme that catalyzes this step, 2'-hydroxyisoflavanol 4,2'-dehydratase or pterocarpan synthase (PTS), remains as an unidenti...
متن کاملThe in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کاملA cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus.
Leguminous plants produce 5-deoxyflavonoids and 5-deoxyisoflavonoids that play essential roles in legume-microbe interactions. Together with chalcone polyketide reductase and cytochrome P450 2-hydroxyisoflavanone synthase, the chalcone isomerase (CHI) of leguminous plants is fundamental in the construction of these ecophysiologically active flavonoids. Although CHIs of nonleguminous plants isom...
متن کاملMolecular cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats (Felis catus).
Normal mammals generally excrete only small amounts of protein in the urine, thus avoiding major leakage of proteins from the body. Proteinuria is the most commonly recognized abnormality in renal disease. However, healthy domestic cats ( Felis catus ) excrete proteins at high concentrations (about 0.5 mg/ml) in their urine. We investigated the possible cause of proteinuria in healthy cats, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 137 3 شماره
صفحات -
تاریخ انتشار 2005